Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Computational models evaluating the impact of sieve plates and radial water exchange on phloem pressure gradients.

Identifieur interne : 000A58 ( Main/Exploration ); précédent : 000A57; suivant : 000A59

Computational models evaluating the impact of sieve plates and radial water exchange on phloem pressure gradients.

Auteurs : Ryan C. Stanfield [Canada] ; Paul J. Schulte [États-Unis] ; Katie E. Randolph [États-Unis] ; Uwe G. Hacke [Canada]

Source :

RBID : pubmed:30074610

Descripteurs français

English descriptors

Abstract

The sugar conducting phloem in angiosperms is a high resistance pathway made up of sieve elements bounded by sieve plates. The high resistance generated by sieve plates may be a trade-off for promoting quick sealing in the event of injury. However, previous modeling efforts have demonstrated a wide variation in the contribution of sieve plates towards total sieve tube resistance. In the current study, we generated high resolution scanning electron microscope images of sieve plates from balsam poplar and integrated them into a mathematical model using Comsol Multiphysics software. We found that sieve plates contribute upwards of 85% towards total sieve tube resistance. Utilizing the Navier-Stokes equations, we found that oblong pores may create over 50% more resistance in comparison with round pores of the same area. Although radial water flows in phloem sieve tubes have been previously considered, their impact on alleviating pressure gradients has not been fully studied. Our novel simulations find that radial water flow can reduce pressure requirements by half in comparison with modeled sieve tubes with no radial permeability. We discuss the implication that sieve tubes may alleviate pressure requirements to overcome high resistances by regulating their membrane permeability along the entire transport pathway.

DOI: 10.1111/pce.13414
PubMed: 30074610


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Computational models evaluating the impact of sieve plates and radial water exchange on phloem pressure gradients.</title>
<author>
<name sortKey="Stanfield, Ryan C" sort="Stanfield, Ryan C" uniqKey="Stanfield R" first="Ryan C" last="Stanfield">Ryan C. Stanfield</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schulte, Paul J" sort="Schulte, Paul J" uniqKey="Schulte P" first="Paul J" last="Schulte">Paul J. Schulte</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, Nevada.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nevada</region>
</placeName>
<wicri:cityArea>School of Life Sciences, University of Nevada-Las Vegas, Las Vegas</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Randolph, Katie E" sort="Randolph, Katie E" uniqKey="Randolph K" first="Katie E" last="Randolph">Katie E. Randolph</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, Nevada.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nevada</region>
</placeName>
<wicri:cityArea>School of Life Sciences, University of Nevada-Las Vegas, Las Vegas</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hacke, Uwe G" sort="Hacke, Uwe G" uniqKey="Hacke U" first="Uwe G" last="Hacke">Uwe G. Hacke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30074610</idno>
<idno type="pmid">30074610</idno>
<idno type="doi">10.1111/pce.13414</idno>
<idno type="wicri:Area/Main/Corpus">000D18</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D18</idno>
<idno type="wicri:Area/Main/Curation">000D18</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D18</idno>
<idno type="wicri:Area/Main/Exploration">000D18</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Computational models evaluating the impact of sieve plates and radial water exchange on phloem pressure gradients.</title>
<author>
<name sortKey="Stanfield, Ryan C" sort="Stanfield, Ryan C" uniqKey="Stanfield R" first="Ryan C" last="Stanfield">Ryan C. Stanfield</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schulte, Paul J" sort="Schulte, Paul J" uniqKey="Schulte P" first="Paul J" last="Schulte">Paul J. Schulte</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, Nevada.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nevada</region>
</placeName>
<wicri:cityArea>School of Life Sciences, University of Nevada-Las Vegas, Las Vegas</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Randolph, Katie E" sort="Randolph, Katie E" uniqKey="Randolph K" first="Katie E" last="Randolph">Katie E. Randolph</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, Nevada.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nevada</region>
</placeName>
<wicri:cityArea>School of Life Sciences, University of Nevada-Las Vegas, Las Vegas</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hacke, Uwe G" sort="Hacke, Uwe G" uniqKey="Hacke U" first="Uwe G" last="Hacke">Uwe G. Hacke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Microscopy, Electron, Scanning (MeSH)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Osmotic Pressure (MeSH)</term>
<term>Phloem (physiology)</term>
<term>Phloem (ultrastructure)</term>
<term>Populus (physiology)</term>
<term>Populus (ultrastructure)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Eau (métabolisme)</term>
<term>Microscopie électronique à balayage (MeSH)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Phloème (physiologie)</term>
<term>Phloème (ultrastructure)</term>
<term>Populus (physiologie)</term>
<term>Populus (ultrastructure)</term>
<term>Pression osmotique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Eau</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phloème</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Phloem</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Phloem</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Microscopy, Electron, Scanning</term>
<term>Models, Theoretical</term>
<term>Osmotic Pressure</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Microscopie électronique à balayage</term>
<term>Modèles théoriques</term>
<term>Phloème</term>
<term>Populus</term>
<term>Pression osmotique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The sugar conducting phloem in angiosperms is a high resistance pathway made up of sieve elements bounded by sieve plates. The high resistance generated by sieve plates may be a trade-off for promoting quick sealing in the event of injury. However, previous modeling efforts have demonstrated a wide variation in the contribution of sieve plates towards total sieve tube resistance. In the current study, we generated high resolution scanning electron microscope images of sieve plates from balsam poplar and integrated them into a mathematical model using Comsol Multiphysics software. We found that sieve plates contribute upwards of 85% towards total sieve tube resistance. Utilizing the Navier-Stokes equations, we found that oblong pores may create over 50% more resistance in comparison with round pores of the same area. Although radial water flows in phloem sieve tubes have been previously considered, their impact on alleviating pressure gradients has not been fully studied. Our novel simulations find that radial water flow can reduce pressure requirements by half in comparison with modeled sieve tubes with no radial permeability. We discuss the implication that sieve tubes may alleviate pressure requirements to overcome high resistances by regulating their membrane permeability along the entire transport pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30074610</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>42</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Computational models evaluating the impact of sieve plates and radial water exchange on phloem pressure gradients.</ArticleTitle>
<Pagination>
<MedlinePgn>466-479</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.13414</ELocationID>
<Abstract>
<AbstractText>The sugar conducting phloem in angiosperms is a high resistance pathway made up of sieve elements bounded by sieve plates. The high resistance generated by sieve plates may be a trade-off for promoting quick sealing in the event of injury. However, previous modeling efforts have demonstrated a wide variation in the contribution of sieve plates towards total sieve tube resistance. In the current study, we generated high resolution scanning electron microscope images of sieve plates from balsam poplar and integrated them into a mathematical model using Comsol Multiphysics software. We found that sieve plates contribute upwards of 85% towards total sieve tube resistance. Utilizing the Navier-Stokes equations, we found that oblong pores may create over 50% more resistance in comparison with round pores of the same area. Although radial water flows in phloem sieve tubes have been previously considered, their impact on alleviating pressure gradients has not been fully studied. Our novel simulations find that radial water flow can reduce pressure requirements by half in comparison with modeled sieve tubes with no radial permeability. We discuss the implication that sieve tubes may alleviate pressure requirements to overcome high resistances by regulating their membrane permeability along the entire transport pathway.</AbstractText>
<CopyrightInformation>© 2018 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stanfield</LastName>
<ForeName>Ryan C</ForeName>
<Initials>RC</Initials>
<Identifier Source="ORCID">0000-0002-7507-7550</Identifier>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schulte</LastName>
<ForeName>Paul J</ForeName>
<Initials>PJ</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, Nevada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Randolph</LastName>
<ForeName>Katie E</ForeName>
<Initials>KE</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, Nevada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hacke</LastName>
<ForeName>Uwe G</ForeName>
<Initials>UG</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D008855" MajorTopicYN="N">Microscopy, Electron, Scanning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="Y">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009997" MajorTopicYN="N">Osmotic Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Comsol Multiphysics</Keyword>
<Keyword MajorTopicYN="Y">Münch hypothesis</Keyword>
<Keyword MajorTopicYN="Y">Navier-Stokes</Keyword>
<Keyword MajorTopicYN="Y">permeable membranes</Keyword>
<Keyword MajorTopicYN="Y">phloem model</Keyword>
<Keyword MajorTopicYN="Y">phloem sap transport</Keyword>
<Keyword MajorTopicYN="Y">radial water exchange</Keyword>
<Keyword MajorTopicYN="Y">sieve plates</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30074610</ArticleId>
<ArticleId IdType="doi">10.1111/pce.13414</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
</country>
<region>
<li>Nevada</li>
</region>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Stanfield, Ryan C" sort="Stanfield, Ryan C" uniqKey="Stanfield R" first="Ryan C" last="Stanfield">Ryan C. Stanfield</name>
</noRegion>
<name sortKey="Hacke, Uwe G" sort="Hacke, Uwe G" uniqKey="Hacke U" first="Uwe G" last="Hacke">Uwe G. Hacke</name>
</country>
<country name="États-Unis">
<region name="Nevada">
<name sortKey="Schulte, Paul J" sort="Schulte, Paul J" uniqKey="Schulte P" first="Paul J" last="Schulte">Paul J. Schulte</name>
</region>
<name sortKey="Randolph, Katie E" sort="Randolph, Katie E" uniqKey="Randolph K" first="Katie E" last="Randolph">Katie E. Randolph</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A58 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A58 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30074610
   |texte=   Computational models evaluating the impact of sieve plates and radial water exchange on phloem pressure gradients.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30074610" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020